A skein relation for singular Soergel bimodules
Autor: | Hogancamp, Matthew, Rose, David E. V., Wedrich, Paul |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the skein relation that governs the HOMFLYPT invariant of links colored by one-column Young diagrams. Our main result is a categorification of this colored skein relation. This takes the form of a homotopy equivalence between two one-sided twisted complexes constructed from Rickard complexes of singular Soergel bimodules associated to braided webs. Along the way, we prove a conjecture of Beliakova--Habiro relating the colored 2-strand full twist complex with the categorical ribbon element for quantum $\mathfrak{sl}_2$. Comment: 34 pages, many diagrams |
Databáze: | arXiv |
Externí odkaz: |