Liouville theorem on a half-space for biharmonic problem with Dirichlet boundary condition
Autor: | Mtiri, Foued, Selmi, Abdelbaki, Zaid, Cherif |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We investigate here the nonlinear elliptic H\'enon type equation: $$\D^{2} u= |x|^a|u|^{p-1}u \; \,\,\mbox{in}\,\,\,\, \R^{n}_{+}, \quad \quad u =\frac{\partial u}{\partial x_n} = 0 \quad \mbox{in}\,\,\,\, \partial \R^{n}_{+},$$ with $p>1$ and $n\geq 2$. In particular, we prove some Liouville type theorems for stable at infinity solutions. The main methods used are the integral estimates, the Pohozaev-type identity and the monotonicity formula. |
Databáze: | arXiv |
Externí odkaz: |