Pseudo-Anosov homeomorphisms of punctured non-orientable surfaces with small stretch factor
Autor: | Khan, Sayantan, Partin, Caleb, Winarski, Rebecca R. |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Algebr. Geom. Topol. 23 (2023) 2823-2856 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/agt.2023.23.2823 |
Popis: | We prove that in the non-orientable setting, the minimal stretch factor of a pseudo-Anosov homeomorphism of a surface of genus $g$ with a fixed number of punctures is asymptotically on the order of $\frac{1}{g}$. Our result adapts the work of Yazdi to non-orientable surfaces. We include the details of Thurston's theory of fibered faces for non-orientable 3-manifolds. Comment: Accepted to Algebraic and Geometric Topology. Statement (1) on page 11 is revised, typos corrected |
Databáze: | arXiv |
Externí odkaz: |