Virtual and universal braid groups, their quotients and representations
Autor: | Bardakov, V., Emel'yanenkov, I., Ivanov, M., Kozlovskaya, T., Nasybullov, T., Vesnin, A. |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In the present paper we study structural aspects of certain quotients of braid groups and virtual braid groups. In particular, we construct and study linear representations $B_n\to {\rm GL}_{n(n-1)/2}\left(\mathbb{Z}[t^{\pm1}]\right)$, $VB_n\to {\rm GL}_{n(n-1)/2}\left(\mathbb{Z}[t^{\pm1}, t_1^{\pm1},t_2^{\pm1},\ldots, t_{n-1}^{\pm1}]\right)$ which are connected with the famous Lawrence-Bigelow-Krammer representation. It turns out that these representations are faithful representations of crystallographic groups $B_n/P_n'$, $VB_n/VP_n'$, respectively. Using these representations we study certain properties of the groups $B_n/P_n'$, $VB_n/VP_n'$. Moreover, we construct new representations and decompositions of universal braid groups $UB_n$. Comment: 29 pages |
Databáze: | arXiv |
Externí odkaz: |