Global existence of strong solutions to the multi-dimensional inhomogeneous incompressible MHD equations

Autor: Yuan, Baoquan, Ke, Xueli
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: This paper is concerned with the Cauchy problem of the multi-dimensional incompressible magnetohydrodynamic equations with inhomogeneous density and fractional dissipation. It is shown that when $\alpha+\beta=1+\frac{n}{2}$ satisfying $1\leq \beta\leq \alpha\leq\min \{\frac{3\beta}{2},\frac{n}{2},1+\frac{n}{4}\}$ and $\frac{n}{4}<\alpha$ for $n\geq3$ , then the inhomogeneous incompressible MHD equations has a unique global strong solution for the initial data in Sobolev space which do not need a small condition.
Comment: 19 pages
Databáze: arXiv