Global existence of strong solutions to the multi-dimensional inhomogeneous incompressible MHD equations
Autor: | Yuan, Baoquan, Ke, Xueli |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper is concerned with the Cauchy problem of the multi-dimensional incompressible magnetohydrodynamic equations with inhomogeneous density and fractional dissipation. It is shown that when $\alpha+\beta=1+\frac{n}{2}$ satisfying $1\leq \beta\leq \alpha\leq\min \{\frac{3\beta}{2},\frac{n}{2},1+\frac{n}{4}\}$ and $\frac{n}{4}<\alpha$ for $n\geq3$ , then the inhomogeneous incompressible MHD equations has a unique global strong solution for the initial data in Sobolev space which do not need a small condition. Comment: 19 pages |
Databáze: | arXiv |
Externí odkaz: |