A dynamical system in the space of convex quadrangles
Autor: | Kochetkov, Yury |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let us consider a family $F(\alpha,\beta,\gamma,\delta)$ of convex quadrangles in the plane with given angles $\{\alpha,\beta,\gamma,\delta\}$ and with the perimeter $2\pi$. Such quadrangle $Q\in F(\alpha,\beta,\gamma,\delta)$ can be considered as a point $(x_1,x_2,x_3,x_4)\in\mathbb{R}^4$, where $\{x_1,x_2,x_3,x_4\}$ are lengths of edges. Then to $F$ a finite open segment $I\subset\mathbb{R}^4$ is corresponded. A quadrangle in $F$, that corresponds to the midpoint of $I$ is called a \emph{balanced quadrangle}. Let $M$ be the set of balanced quadrangles. The function $f:M\to M$ is defined in the following way: angles of the balanced quadrangle $Q'$, $Q'=f(Q)$, are numerically equal to edges of $Q$. The map $f$ defines a dynamical system in the space of balanced quadrangles. In this work we study properties of this system. Comment: 4 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |