Multilinear Polynomials Are Surjective on Algebras With Surjective Inner Derivations
Autor: | Vitas, Daniel |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Algebra, 565, 255-281 (2021) |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jalgebra.2020.09.004 |
Popis: | Let $f(X_1,\dots, X_n)$ be a nonzero multilinear noncommutative polynomial. If $A$ is a unital algebra with a surjective inner derivation, then every element in $A$ can be written as $f(a_1,\dots,a_n)$ for some $a_i\in A$. Comment: 21 pages, 0 figures, submited to Journal of Algebra |
Databáze: | arXiv |
Externí odkaz: |