Multilinear Polynomials Are Surjective on Algebras With Surjective Inner Derivations

Autor: Vitas, Daniel
Rok vydání: 2021
Předmět:
Zdroj: Journal of Algebra, 565, 255-281 (2021)
Druh dokumentu: Working Paper
DOI: 10.1016/j.jalgebra.2020.09.004
Popis: Let $f(X_1,\dots, X_n)$ be a nonzero multilinear noncommutative polynomial. If $A$ is a unital algebra with a surjective inner derivation, then every element in $A$ can be written as $f(a_1,\dots,a_n)$ for some $a_i\in A$.
Comment: 21 pages, 0 figures, submited to Journal of Algebra
Databáze: arXiv