On Matrix Factorizations in Subspace Clustering

Autor: Arian, Reeshad, Hamm, Keaton
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: This article explores subspace clustering algorithms using CUR decompositions, and examines the effect of various hyperparameters in these algorithms on clustering performance on two real-world benchmark datasets, the Hopkins155 motion segmentation dataset and the Yale face dataset. Extensive experiments are done for a variety of sampling methods and oversampling parameters for these datasets, and some guidelines for parameter choices are given for practical applications.
Comment: 13 pages plus 4 pages of tables
Databáze: arXiv