The Ring of Polyfunctions over $\mathbb Z/n\mathbb Z$
Autor: | Specker, Ernst, Hungerbühler, Norbert, Wasem, Micha |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1080/00927872.2022.2092628 |
Popis: | We study the ring of polyfunctions over $\mathbb Z/n\mathbb Z$. The ring of polyfunctions over a commutative ring $R$ with unit element is the ring of functions $f:R\to R$ which admit a polynomial representative $p\in R[x]$ in the sense that $f(x)= p(x)$ for all $x\in R$. This allows to define a ring invariant $s$ which associates to a commutative ring $R$ with unit element a value in $\mathbb N\cup\{\infty\}$. The function $s$ generalizes the number theoretic Smarandache function. For the ring $R=\mathbb Z/n\mathbb Z$ we provide a unique representation of polynomials which vanish as a function. This yields a new formula for the number $\Psi(n)$ of polyfunctions over $\mathbb Z/n\mathbb Z$. We also investigate algebraic properties of the ring of polyfunctions over $\mathbb Z/n\mathbb Z$. In particular, we identify the additive subgroup of the ring and the ring structure itself. Moreover we derive formulas for the size of the ring of polyfunctions in several variables over $\mathbb Z/n\mathbb Z$, and we compute the number of polyfunctions which are units of the ring. Comment: 26 pages. Communications in Algebra, 2022 |
Databáze: | arXiv |
Externí odkaz: |