Kluv\'{a}nek-Lewis-Henstock integral in a Banach space

Autor: Kalita, Hemanta, Hazarika, Bipan
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We investigate some properties and convergence theorem of Kluv\'{a}nek-Lewis-Henstock $\m-$integrability for $\m-$measurable functions that we introduced in \cite{ABH}. We give a $\m-$a.e. convergence version of Dominated (resp. Bounded) Convergence Theorem for $\m.$ We introduce Kluv\'{a}nek-Lewis-Henstock integrable of scalar-valued functions with respect to a set valued measure in a Banach space. Finally we introduce $(KL)-$type Dominated Convergence Theorem for the set-valued Kluv\'{a}nek-Lewis-Henstock integral.
Comment: no of pages 16
Databáze: arXiv