Kluv\'{a}nek-Lewis-Henstock integral in a Banach space
Autor: | Kalita, Hemanta, Hazarika, Bipan |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We investigate some properties and convergence theorem of Kluv\'{a}nek-Lewis-Henstock $\m-$integrability for $\m-$measurable functions that we introduced in \cite{ABH}. We give a $\m-$a.e. convergence version of Dominated (resp. Bounded) Convergence Theorem for $\m.$ We introduce Kluv\'{a}nek-Lewis-Henstock integrable of scalar-valued functions with respect to a set valued measure in a Banach space. Finally we introduce $(KL)-$type Dominated Convergence Theorem for the set-valued Kluv\'{a}nek-Lewis-Henstock integral. Comment: no of pages 16 |
Databáze: | arXiv |
Externí odkaz: |