Local acceleration of protons to 100 keV in a quasi-parallel bow shock

Autor: Stasiewicz, Krzysztof, Eliasson, Bengt, Cohen, Ian J., Turner, Drew L., Ergun, Robert E.
Rok vydání: 2021
Předmět:
Zdroj: Journal of Geophysical Research: Space Physics, 126, e2021JA029477, 2021
Druh dokumentu: Working Paper
DOI: 10.1029/2021JA029477
Popis: Recent observations in the quasi-parallel bow shock by the MMS spacecraft show rapid heating and acceleration of ions up to an energy of about 100 keV. It is demonstrated that a prominent acceleration mechanism is the nonlinear interaction with a spectrum of waves produced by gradient driven instabilities, including the lower hybrid drift (LHD) instability, modified two-stream (MTS) instability and electron cyclotron drift (ECD) instability. Test-particle simulations show that the observed spectrum of waves can rapidly accelerate protons up to a few hundreds keV by the ExB mechanism. The ExB wave mechanism is related to the surfatron mechanism at shocks but through the coupling with the stochastic heating condition it produces significant acceleration on much shorter temporal and spatial scales by the interaction with bursts of waves within a cyclotron period. The results of this paper are built on the heritage of four-point measurement techniques developed for the Cluster mission and imply that the concepts of Fermi acceleration, diffusive shock acceleration, and shock drift acceleration are not needed to explain proton acceleration to hundreds keV at the Earth's bow shock.
Comment: 16 pages, 5 figures, accepted for publication in JGR: Space Physics
Databáze: arXiv