An Investigation into Mini-Batch Rule Learning

Autor: Beck, Florian, Fürnkranz, Johannes
Rok vydání: 2021
Předmět:
Zdroj: 2nd Workshop on Deep Continuous-Discrete Machine Learning (DeCoDeML), ECML-PKDD 2020, Ghent, Belgium
Druh dokumentu: Working Paper
Popis: We investigate whether it is possible to learn rule sets efficiently in a network structure with a single hidden layer using iterative refinements over mini-batches of examples. A first rudimentary version shows an acceptable performance on all but one dataset, even though it does not yet reach the performance levels of Ripper.
Databáze: arXiv