Quot schemes for Kleinian orbifolds

Autor: Craw, Alastair, Gammelgaard, Søren, Gyenge, Ádám, Szendrői, Balázs
Rok vydání: 2021
Předmět:
Zdroj: SIGMA 17 (2021), 099, 21 pages
Druh dokumentu: Working Paper
DOI: 10.3842/SIGMA.2021.099
Popis: For a finite subgroup $\Gamma\subset {\mathrm{SL}}(2,\mathbb{C})$, we identify fine moduli spaces of certain cornered quiver algebras, defined in earlier work, with orbifold Quot schemes for the Kleinian orbifold $[\mathbb{C}^2/\Gamma]$. We also describe the reduced schemes underlying these Quot schemes as Nakajima quiver varieties for the framed McKay quiver of $\Gamma$, taken at specific non-generic stability parameters. These schemes are therefore irreducible, normal and admit symplectic resolutions. Our results generalise our previous work on the Hilbert scheme of points on $\mathbb{C}^2/\Gamma$; we present arguments that completely bypass the ADE classification.
Comment: Inaccuracy corrected
Databáze: arXiv