On certain Generalizations of $\mathcal{S}^*(\psi)$: II
Autor: | Gangania, Kamaljeet, Kumar, S. Sivaprasad |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we prove various radius results and obtain sufficient conditions using the convolution for the Ma-Minda classes $\mathcal{S}^*(\psi)$ and $\mathcal{C}(\psi)$ of starlike and convex analytic functions. We also obtain the Bohr radius for the class $ S_{f}(\psi):= \{g(z)=\sum_{k=1}^{\infty}b_k z^k : g \prec f \}$ of subordinants, where $f\in \mathcal{S}^*(\psi).$ The results are improvements and generalizations of several well known results. Comment: second half of the main results are from arXiv:2007.06069 |
Databáze: | arXiv |
Externí odkaz: |