Hilbert modules, rigged modules and stable isomorphism

Autor: Eleftherakis, G. K., Papapetros, E.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: Rigged modules over an operator algebra are a generalization of Hilbert modules over a $C^{\star}$-algebra. We characterize the rigged modules over an operator algebra $\mathcal A$ which are orthogonally complemented in $C_\infty(\mathcal A),$ the space of infinite columns with entries in $\mathcal A.$ We show that every such rigged module `restricts' to a bimodule of Morita equivalence between appropriate stably isomorphic operator algebras.
Comment: The paper has been rewritten with emphasis on the theory of non-selfadjoint operator algebras
Databáze: arXiv