Hilbert modules, rigged modules and stable isomorphism
Autor: | Eleftherakis, G. K., Papapetros, E. |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Rigged modules over an operator algebra are a generalization of Hilbert modules over a $C^{\star}$-algebra. We characterize the rigged modules over an operator algebra $\mathcal A$ which are orthogonally complemented in $C_\infty(\mathcal A),$ the space of infinite columns with entries in $\mathcal A.$ We show that every such rigged module `restricts' to a bimodule of Morita equivalence between appropriate stably isomorphic operator algebras. Comment: The paper has been rewritten with emphasis on the theory of non-selfadjoint operator algebras |
Databáze: | arXiv |
Externí odkaz: |