Rademacher-Gaussian tail comparison for complex coefficients and related problems

Autor: Chasapis, Giorgos, Liu, Ruoyuan, Tkocz, Tomasz
Rok vydání: 2021
Předmět:
Zdroj: Proc. Amer. Math. Soc. 150 (2022), no. 3, 1339-1349
Druh dokumentu: Working Paper
Popis: We provide a generalisation of Pinelis' Rademacher-Gaussian tail comparison to complex coefficients. We also establish uniform bounds on the probability that the magnitude of weighted sums of independent random vectors uniform on Euclidean spheres with matrix coefficients exceeds its second moment.
Databáze: arXiv