Upper bounds for fractional joint moments of the Riemann zeta function
Autor: | Curran, Michael J. |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We establish upper bounds for the joint moments of the $2k^{\text{th}}$ power of the Riemann zeta function with the $2h^{\text{th}}$ power of its derivative for $0 \leq h \leq 1$ and $1 \leq k \leq 2$. These bounds are expected to be sharp based upon predictions from random matrix theory. Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |