Upper bounds for fractional joint moments of the Riemann zeta function

Autor: Curran, Michael J.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We establish upper bounds for the joint moments of the $2k^{\text{th}}$ power of the Riemann zeta function with the $2h^{\text{th}}$ power of its derivative for $0 \leq h \leq 1$ and $1 \leq k \leq 2$. These bounds are expected to be sharp based upon predictions from random matrix theory.
Comment: 10 pages
Databáze: arXiv