Chern currents of coherent sheaves

Autor: Lärkäng, Richard, Wulcan, Elizabeth
Rok vydání: 2021
Předmět:
Zdroj: Épijournal de Géométrie Algébrique, Volume 6 (July 30, 2022) epiga:8653
Druh dokumentu: Working Paper
DOI: 10.46298/epiga.2022.8653
Popis: Given a finite locally free resolution of a coherent analytic sheaf $\mathcal F$, equipped with Hermitian metrics and connections, we construct an explicit current, obtained as the limit of certain smooth Chern forms of $\mathcal F$, that represents the Chern class of $\mathcal F$ and has support on the support of $\mathcal F$. If the connections are $(1,0)$-connections and $\mathcal F$ has pure dimension, then the first nontrivial component of this Chern current coincides with (a constant times) the fundamental cycle of $\mathcal F$. The proof of this goes through a generalized Poincar\'e-Lelong formula, previously obtained by the authors, and a result that relates the Chern current to the residue current associated with the locally free resolution.
Comment: 26 pages. v5: Correct \'Epiga article number, no other change to v3
Databáze: arXiv