First Steps in Twisted Rabinowitz-Floer Homology
Autor: | Bähni, Yannis |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Symplectic Geometry Volume 21 (2023) Number 1 |
Druh dokumentu: | Working Paper |
DOI: | 10.4310/JSG.2023.v21.n1.a3 |
Popis: | Rabinowitz-Floer homology is the Morse-Bott homology in the sense of Floer associated with the Rabinowitz action functional introduced by Kai Cieliebak and Urs Frauenfelder in 2009. In our work, we consider a generalisation of this theory to a Rabinowitz-Floer homology of a Liouville automorphism. As an application, we show the existence of noncontractible periodic Reeb orbits on quotients of symmetric star-shaped hypersurfaces. In particular, our theory applies to lens spaces. Comment: 40 pages, 5 figures. Fixed typos and exposition. Improved main result to hold for all even-dimensional lens spaces. Submitted to the Journal of Symplectic Geometry |
Databáze: | arXiv |
Externí odkaz: |