First Steps in Twisted Rabinowitz-Floer Homology

Autor: Bähni, Yannis
Rok vydání: 2021
Předmět:
Zdroj: Journal of Symplectic Geometry Volume 21 (2023) Number 1
Druh dokumentu: Working Paper
DOI: 10.4310/JSG.2023.v21.n1.a3
Popis: Rabinowitz-Floer homology is the Morse-Bott homology in the sense of Floer associated with the Rabinowitz action functional introduced by Kai Cieliebak and Urs Frauenfelder in 2009. In our work, we consider a generalisation of this theory to a Rabinowitz-Floer homology of a Liouville automorphism. As an application, we show the existence of noncontractible periodic Reeb orbits on quotients of symmetric star-shaped hypersurfaces. In particular, our theory applies to lens spaces.
Comment: 40 pages, 5 figures. Fixed typos and exposition. Improved main result to hold for all even-dimensional lens spaces. Submitted to the Journal of Symplectic Geometry
Databáze: arXiv