Extension groups of Tautological Bundles on Symmetric Products of Curves

Autor: Krug, Andreas
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if $E\neq \mathcal O_X$ is simple, then the natural map $\operatorname*{Ext}^1(E,E)\to \operatorname*{Ext}^1(E^{[n]},E^{[n]})$ is injective for every $n$. Along with previous results, this implies that $E\mapsto E^{[n]}$ defines an embedding of the moduli space of stable bundles of slope $\mu\notin[-1,n-1]$ on the curve $X$ into the moduli space of stable bundles on the symmetric product $X^{(n)}$. The image of this embedding is, in most cases, contained in the singular locus. For line bundles on a non-hyperelliptic curve, the embedding identifies the Brill--Noether loci of $X$ with the loci in the moduli space of stable bundles on $X^{(n)}$ where the dimension of the tangent space jumps. We also prove that $E^{[n]}$ is simple if $E$ is simple.
Databáze: arXiv