Stein's Method for Probability Distributions on $\mathbb{S}^1$
Autor: | Lewis, Alexander |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we propose a modification to the density approach to Stein's method for intervals for the unit circle $\mathbb{S}^1$ which is motivated by the differing geometry of $\mathbb{S}^1$ to Euclidean space. We provide an upper bound to the Wasserstein metric for circular distributions and exhibit a variety of different bounds between distributions; particularly, between the von-Mises and wrapped normal distributions, and the wrapped normal and wrapped Cauchy distributions. |
Databáze: | arXiv |
Externí odkaz: |