Conjugacy classes of big mapping class groups
Autor: | Hernández, Jesús Hernández, Hrušák, Michael, Morales, Israel, Randecker, Anja, Sedano, Manuel, Valdez, Ferrán |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We describe the topological behavior of the conjugacy action of the mapping class group of an orientable infinite-type surface $\Sigma$ on itself. Our main results are: (1) All conjugacy classes of $MCG(\Sigma)$ are meager for every $\Sigma$, (2) $MCG(\Sigma)$ has a somewhere dense conjugacy class if and only if $\Sigma$ has at most two maximal ends and no non-displaceable finite-type subsurfaces, (3) $MCG(\Sigma)$ has a dense conjugacy class if and only if $\Sigma$ has a unique maximal end and no non-displaceable finite-type subsurfaces. Our techniques are based on model-theoretic methods developed by Kechris, Rosendal and Truss. Comment: v3. Corrected version after revision. To appear in J. London Math. Soc |
Databáze: | arXiv |
Externí odkaz: |