Lattice simulation of $(2+1)D$ phonetic solitons and the Renormalization group

Autor: Furui, Sadataka
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: The outline of lattice simulations of $(2+1)D$ soliton-propagations in the background of Weyl spinors is presented. Clifford algebra is applied on Luescher's domain decomposition method. The Clifford algebra shows that there are loop parts and interpolating surface parts in the Wilson's lattice action. We adopt the Migdal-Kadanoff prescription and the fixed point action in momentum space of Benfatto and Gallavotti, and shows a road map for simulating phonetic solitons in materials. Detections of topological anomalies (APS index) in nondestructive testing are discussed.
Comment: 16 pages, 38 figures
Databáze: arXiv