Anomalous symmetries of classifiable C*-algebras
Autor: | Evington, Samuel, Pacheco, Sergio Girón |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the $H^3$ invariant of a group homomorphism $\phi:G \rightarrow \mathrm{Out}(A)$, where $A$ is a classifiable C$^*$-algebra. We show the existence of an obstruction to possible $H^3$ invariants arising from considering the unitary algebraic $K_1$ group. In particular, we prove that when $A$ is the Jiang--Su algebra $\mathcal{Z}$ this invariant must vanish. We deduce that the unitary fusion categories $\mathrm{Hilb}(G, \omega)$ for non-trivial $\omega \in H^3(G, \mathbb{T})$ cannot act on $\mathcal{Z}$. Comment: 29 pages; accepted version; Studia Math., to appear |
Databáze: | arXiv |
Externí odkaz: |