Anomalous symmetries of classifiable C*-algebras

Autor: Evington, Samuel, Pacheco, Sergio Girón
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We study the $H^3$ invariant of a group homomorphism $\phi:G \rightarrow \mathrm{Out}(A)$, where $A$ is a classifiable C$^*$-algebra. We show the existence of an obstruction to possible $H^3$ invariants arising from considering the unitary algebraic $K_1$ group. In particular, we prove that when $A$ is the Jiang--Su algebra $\mathcal{Z}$ this invariant must vanish. We deduce that the unitary fusion categories $\mathrm{Hilb}(G, \omega)$ for non-trivial $\omega \in H^3(G, \mathbb{T})$ cannot act on $\mathcal{Z}$.
Comment: 29 pages; accepted version; Studia Math., to appear
Databáze: arXiv