Overcoming Complexity Catastrophe: An Algorithm for Beneficial Far-Reaching Adaptation under High Complexity
Autor: | Chanda, Sasanka Sekhar, Yayavaram, Sai |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In his seminal work with NK algorithms, Kauffman noted that fitness outcomes from algorithms navigating an NK landscape show a sharp decline at high complexity arising from pervasive interdependence among problem dimensions. This phenomenon - where complexity effects dominate (Darwinian) adaptation efforts - is called complexity catastrophe. We present an algorithm - incremental change taking turns (ICTT) - that finds distant configurations having fitness superior to that reported in extant research, under high complexity. Thus, complexity catastrophe is not inevitable: a series of incremental changes can lead to excellent outcomes. Comment: 10 pages, 5 Figures |
Databáze: | arXiv |
Externí odkaz: |