Eigenvalue asymptotics for the one-particle kinetic energy density operator

Autor: Sobolev, Alexander V.
Rok vydání: 2021
Předmět:
Zdroj: J. Funct. Anal. 2022
Druh dokumentu: Working Paper
DOI: 10.1016/j.jfa.2022.109604
Popis: The kinetic energy of a multi-particle system is described by the one-particle kinetic energy density matrix $\tau(x, y)$. Alongside the one-particle density matrix $\gamma(x, y)$, it is one of the key objects in the quantum-mechanical approximation schemes. We prove the asymptotic formula $\lambda_k \sim (Bk)^{-2}$, $B \ge 0$, as $k\to\infty$, for the eigenvalues $\lambda_k$ of the self-adjoint operator $\boldsymbol{\sf T}\ge 0$ with kernel $\tau(x, y)$.
Comment: arXiv admin note: substantial text overlap with arXiv:2103.11896 Author's note: bounds for singular values have been considerably simplified
Databáze: arXiv