Autor: |
Galindo, Carlos, Monserrat, Francisco, Moreno-Ávila, Carlos-Jesús, Pérez-Callejo, Elvira |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
International Mathematics Research Notices. Volume 2023, Issue 16, pages 13757-13779 (2023) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1093/imrn/rnac085 |
Popis: |
We provide a lower bound on the degree of curves of the projective plane $\mathbb{P}^2$ passing through the centers of a divisorial valuation $\nu$ of $\mathbb{P}^2$ with prescribed multiplicities, and an upper bound for the Seshadri-type constant of $\nu$, $\hat{\mu}(\nu)$, constant that is crucial in the Nagata-type valuative conjecture. We also give some results related to the bounded negativity conjecture concerning those rational surfaces having the projective plane as a relatively minimal model. |
Databáze: |
arXiv |
Externí odkaz: |
|