InferNet for Delayed Reinforcement Tasks: Addressing the Temporal Credit Assignment Problem

Autor: Ausin, Markel Sanz, Azizsoltani, Hamoon, Ju, Song, Kim, Yeo Jin, Chi, Min
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: The temporal Credit Assignment Problem (CAP) is a well-known and challenging task in AI. While Reinforcement Learning (RL), especially Deep RL, works well when immediate rewards are available, it can fail when only delayed rewards are available or when the reward function is noisy. In this work, we propose delegating the CAP to a Neural Network-based algorithm named InferNet that explicitly learns to infer the immediate rewards from the delayed rewards. The effectiveness of InferNet was evaluated on two online RL tasks: a simple GridWorld and 40 Atari games; and two offline RL tasks: GridWorld and a real-life Sepsis treatment task. For all tasks, the effectiveness of using the InferNet inferred rewards is compared against the immediate and the delayed rewards with two settings: with noisy rewards and without noise. Overall, our results show that the effectiveness of InferNet is robust against noisy reward functions and is an effective add-on mechanism for solving temporal CAP in a wide range of RL tasks, from classic RL simulation environments to a real-world RL problem and for both online and offline learning.
Databáze: arXiv