Connective Models for Topological Modular Forms of Level $n$
Autor: | Meier, Lennart |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Algebr. Geom. Topol. 23 (2023) 3553-3586 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/agt.2023.23.3553 |
Popis: | The goal of this article is to construct and study connective versions of topological modular forms of higher level like $\mathrm{tmf}_1(n)$. In particular, we use them to realize Hirzebruch's level-$n$ genus as a map of ring spectra. Comment: 27 pages; v2: added several clarifications and minor correcionts in response to referee's comments, final version to appear in AGT |
Databáze: | arXiv |
Externí odkaz: |