The effect of core formation on surface composition and planetary habitability

Autor: Dyck, Brendan, Wade, Jon, Palin, Richard
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
DOI: 10.3847/2041-8213/abf7ca
Popis: The melt productivity of a differentiated planet's mantle is primarily controlled by its iron content, which is itself approximated by the planet's core mass fraction (CMF). Here we show that estimates of an exo-planet's CMF allows robust predictions of the thickness, composition and mineralogy of the derivative crust. These predicted crustal compositions allow constraints to be placed on volatile cycling between surface and the deep planetary interior, with implications for the evolution of habitable planetary surfaces. Planets with large, terrestrial-like, CMFs ($\geq$0.32) will exhibit thin crusts that are inefficient at transporting surface water and other volatiles into the underlying mantle. By contrast, rocky planets with smaller CMFs ($\leq$0.24) and higher, Mars-like, mantle iron contents will develop thick crusts capable of stabilizing hydrous minerals, which can effectively sequester volatiles into planetary interiors and act to remove surface water over timescales relevant to evolution. The extent of core formation has profound consequences for the subsequent planetary surface environment and may provide additional constraints in the hunt for habitable, Earth-like exo-planets.
Comment: 18 pages, 5 figures, accepted for publication in ApJL
Databáze: arXiv