Initial-boundary value problem for 1D pressureless gas dynamics

Autor: Neumann, L., Oberguggenberger, M., Sahoo, M. R., Sen, A.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: The paper considers the system of pressureless gas dynamics in one space dimension. The question of solvability of the initial-boundary value problem is addressed. Using the method of generalized potentials and characteristic triangles, extended to the boundary value case, an explicit way of constructing measure-valued solutions is presented. The prescription of boundary data is shown to depend on the behavior of the generalized potentials at the boundary. We show that the constructed solution satisfies an entropy condition and it conserves mass, whereby mass may accumulate at the boundary. Conservation of momentum again depends on the behavior of the generalized boundary potentials. There is a large amount of literature where the initial value problem for the pressureless gas dynamics model has been studied. To our knowledge, this paper is the first one which considers the initial-boundary value problem.
Databáze: arXiv