On the ideal $J[\kappa]$
Autor: | Rinot, Assaf |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Motivated by a question from a recent paper by Gilton, Levine and Stejskalova, we obtain a new characterization of the ideal $J[\kappa]$, from which we confirm that $\kappa$-Souslin trees exist in various models of interest. As a corollary we get that for every integer $n$ such that $\mathfrak b<2^{\aleph_n}=\aleph_{n+1}$, if $\square(\aleph_{n+1})$ holds, then there exists an $\aleph_{n+1}$-Souslin tree. |
Databáze: | arXiv |
Externí odkaz: |