On the Vapnik-Chervonenkis dimension of products of intervals in $\mathbb{R}^d$
Autor: | Gómez, Alirio Gómez, Kaufmann, Pedro L. |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study combinatorial complexity of certain classes of products of intervals in $\mathbb{R}^d$, from the point of view of Vapnik-Chervonenkis geometry. As a consequence of the obtained results, we conclude that the Vapnik-Chervonenkis dimension of the set of balls in $\ell_\infty^d$ -- which denotes $\R^d$ equipped with the sup norm -- equals $\lfloor (3d+1)/2\rfloor$. |
Databáze: | arXiv |
Externí odkaz: |