On the Vapnik-Chervonenkis dimension of products of intervals in $\mathbb{R}^d$

Autor: Gómez, Alirio Gómez, Kaufmann, Pedro L.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We study combinatorial complexity of certain classes of products of intervals in $\mathbb{R}^d$, from the point of view of Vapnik-Chervonenkis geometry. As a consequence of the obtained results, we conclude that the Vapnik-Chervonenkis dimension of the set of balls in $\ell_\infty^d$ -- which denotes $\R^d$ equipped with the sup norm -- equals $\lfloor (3d+1)/2\rfloor$.
Databáze: arXiv