On algebraic bi-Lipschitz homeomorphisms
Autor: | Jelonek, Zbigniew |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $X\subset \mathbb{C}^n; Y\subset \mathbb{C}^m$ be closed affine varieties and let $\phi: X\to Y$ be an algebraic bi-Lipschitz homeomorphism. Then ${\rm deg}\ X={\rm deg}\ Y.$ Similarly, let $(X,0)\subset (\mathbb{C}^n,0), (Y,0)\subset (\mathbb{C}^m,0)$ be germs of analytic sets and let $f: (X,0)\to (Y,0)$ be a c-holomorphic and bi-Lipschitz mapping. Then ${\rm mult}_0 \ X= {\rm mult }_0 \ Y.$ Finally we show that the normality is not a bi-Lipschitz invariant. |
Databáze: | arXiv |
Externí odkaz: |