Polynomials associated to non-convex bodies
Autor: | Levenberg, N., Wielonsky, F. |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Polynomial spaces associated to a convex body $C$ in $({\bf R}^+)^d$ have been the object of recent studies. In this work, we consider polynomial spaces associated to non-convex $C$. We develop some basic pluripotential theory including notions of $C-$extremal plurisubharmonic functions $V_{C,K}$ for $K\subset {\bf C}^d$ compact. Using this, we discuss Bernstein-Walsh type polynomial approximation results and asymptotics of random polynomials in this non-convex setting. |
Databáze: | arXiv |
Externí odkaz: |