The Equivariant Spectral Flow and Bifurcation of Periodic Solutions of Hamiltonian Systems
Autor: | Izydorek, Marek, Janczewska, Joanna, Waterstraat, Nils |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We define a spectral flow for paths of selfadjoint Fredholm operators that are equivariant under the orthogonal action of a compact Lie group as an element of the representation ring of the latter. This $G$-equivariant spectral flow shares all common properties of the integer valued classical spectral flow, and it can be non-trivial even if the classical spectral flow vanishes. Our main theorem uses the $G$-equivariant spectral flow to study bifurcation of periodic solutions for autonomous Hamiltonian systems with symmetries. Comment: 20 pages |
Databáze: | arXiv |
Externí odkaz: |