A condition for the existence of zero coefficients in the powers of the determinant polynomial

Autor: Itoh, Minoru, Shimoyoshi, Jimpei
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.jalgebra.2021.03.017
Popis: We discuss the existence of zero coefficients in the powers of the determinant polynomial of order $n$. D. G. Glynn proved that the coefficients of the $m$th power of the determinant polynomial are all nonzero, if $m = p-1$ with a prime $p$. We show that the converse also holds, if $n \geq 3$. The proof is quite elementary.
Comment: 4 pages; to appear in J. Algebra
Databáze: arXiv