A condition for the existence of zero coefficients in the powers of the determinant polynomial
Autor: | Itoh, Minoru, Shimoyoshi, Jimpei |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jalgebra.2021.03.017 |
Popis: | We discuss the existence of zero coefficients in the powers of the determinant polynomial of order $n$. D. G. Glynn proved that the coefficients of the $m$th power of the determinant polynomial are all nonzero, if $m = p-1$ with a prime $p$. We show that the converse also holds, if $n \geq 3$. The proof is quite elementary. Comment: 4 pages; to appear in J. Algebra |
Databáze: | arXiv |
Externí odkaz: |