EXOPLINES: Molecular Absorption Cross-Section Database for Brown Dwarf and Giant Exoplanet Atmospheres

Autor: Gharib-Nezhad, Ehsan, Iyer, Aishwarya R., Line, Michael R., Freedman, Richard S., Marley, Mark S., Batalha, Natasha E.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
DOI: 10.3847/1538-4365/abf504
Popis: Stellar, substellar, and planetary atmosphere models are all highly sensitive to the input opacities. Generational differences between various state-of-the-art stellar/planetary models are primarily because of incomplete and outdated atomic/molecular line-lists. Here we present a database of pre-computed absorption cross-sections for all isotopologues of key atmospheric molecules relevant to late-type stellar, brown dwarf, and planetary atmospheres: MgH, AlH, CaH, TiH, CrH, FeH, SiO, TiO, VO, and H2O. The pressure and temperature ranges of the computed opacities are between 10$^{-6}$--3000~bar and 75--4000~K, and their spectral ranges are 0.25--330~$\mu$m for many cases where possible. For cases with no pressure-broadening data, we use collision theory to bridge the gap. We also probe the effect of absorption cross-sections calculated from different line lists in the context of Ultra-Hot Jupiter and M-dwarf atmospheres. Using 1-D self-consistent radiative-convective thermochemical equilibrium models, we report significant variations in the theoretical spectra and thermal profiles of substellar atmospheres. With a 2000 K representative Ultra-Hot Jupiter, we report variations of up to 320 and 80 ppm in transmission and thermal emission spectra, respectively. For a 3000 K M-dwarf, we find differences of up to 125$\%$ in the spectra. We find that the most significant differences arise due to the choice of TiO line-lists, primarily below 1$\mu$m. In sum, we present (1) a database of pre-computed molecular absorption cross-sections, and (2) quantify biases that arise when characterizing substellar/exoplanet atmospheres due to line list differences, therefore highlighting the importance of correct and complete opacities for eventual applications to high precision spectroscopy and photometry.
Comment: accepted in ApJS. 44 pages, 17 figures, 7 tables. Comments are welcome
Databáze: arXiv