B\'ezoutians and the $\mathbb{A}^1$-degree
Autor: | Brazelton, Thomas, McKean, Stephen, Pauli, Sabrina |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Alg. Number Th. 17 (2023) 1985-2012 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/ant.2023.17.1985 |
Popis: | We prove that both the local and global $\mathbb{A}^1$-degree of an endomorphism of affine space can be computed in terms of the multivariate B\'ezoutian. In particular, we show that the B\'ezoutian bilinear form, the Scheja--Storch form, and the $\mathbb{A}^1$-degree for complete intersections are isomorphic. Our global theorem generalizes Cazanave's theorem in the univariate case, and our local theorem generalizes Kass--Wickelgren's theorem on EKL forms and the local degree. This result provides an algebraic formula for local and global degrees in motivic homotopy theory. Comment: Fixed a small typo |
Databáze: | arXiv |
Externí odkaz: |