B\'ezoutians and the $\mathbb{A}^1$-degree

Autor: Brazelton, Thomas, McKean, Stephen, Pauli, Sabrina
Rok vydání: 2021
Předmět:
Zdroj: Alg. Number Th. 17 (2023) 1985-2012
Druh dokumentu: Working Paper
DOI: 10.2140/ant.2023.17.1985
Popis: We prove that both the local and global $\mathbb{A}^1$-degree of an endomorphism of affine space can be computed in terms of the multivariate B\'ezoutian. In particular, we show that the B\'ezoutian bilinear form, the Scheja--Storch form, and the $\mathbb{A}^1$-degree for complete intersections are isomorphic. Our global theorem generalizes Cazanave's theorem in the univariate case, and our local theorem generalizes Kass--Wickelgren's theorem on EKL forms and the local degree. This result provides an algebraic formula for local and global degrees in motivic homotopy theory.
Comment: Fixed a small typo
Databáze: arXiv