Popis: |
Quantum dots are arguably one of the best platforms for optically accessible spin based qubits. The paramount demand of extended qubit storage time can be met by using quantum-dot-confined dark exciton: a longlived electron-hole pair with parallel spins. Despite its name the dark exciton reveals weak luminescence that can be directly measured. The origins of this optical activity remain largely unexplored. In this work, using the atomistic tight-binding method combined with configuration-interaction approach, we demonstrate that atomic-scale randomness strongly affects oscillator strength of dark excitons confined in self-assembled cylindrical InGaAs quantum dots with no need for faceting or shape-elongation. We show that this process is mediated by two mechanisms: mixing dark and bright configurations by exchange interaction, and equally important appearance of non-vanishing optical transition matrix elements that otherwise correspond to nominally forbidden transitions in a non-alloyed case. The alloy randomness has essential impact on both bright and dark exciton states, including their energy, emission intensity, and polarization angle. We conclude that, due to the atomic-scale alloy randomness, finding dots with desired dark exciton properties may require exploration of a large ensemble, similarly to how dots with low bright exciton splitting are selected for entanglement generation. |