How Alfv\'en waves energize the solar wind: heat vs work

Autor: Perez, Jean C., Chandran, Benjamin D. G., Klein, Kristopher G., Martinović, Mihailo M.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1017/S0022377821000167
Popis: A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfv\'en-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflection-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms. In particular, we compute the fraction of the AW power at the coronal base ($P_{\rm AWb}$) that is transferred to solar-wind particles via heating between the coronal base and heliocentric distance $r$, which we denote $\chi_{\rm H}(r)$, and the fraction that is transferred via work, which we denote $\chi_{\rm W}(r)$. We find that $\chi_{\rm W}(r_{\rm A})$ ranges from 0.15 to 0.3, where $r_{\rm A}$ is the Alfv\'en critical point. This value is small compared to~one because the Alfv\'en speed $v_{\rm A} $ exceeds the outflow velocity $U$ at $rr_{\rm A}$, where $v_{\rm A} < U$, the AWs are in an approximate sense "stuck to the plasma", which helps them do pressure work as the plasma expands. However, much of the AW power has dissipated by the time the AWs reach $r=r_{\rm A}$, so the total rate at which AWs do work on the plasma at $r>r_{\rm A}$ is a modest fraction of $P_{\rm AWb}$. We find that heating is more effective than work at $rComment: 15 pages, 2 figures, accepted for publication in the Journal of Plasma Physics
Databáze: arXiv