Efficient bit encoding of neural networks for Fock states

Autor: Kästle, Oliver, Carmele, Alexander
Rok vydání: 2021
Předmět:
Zdroj: Phys. Rev. A 103, 062409 (2021)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevA.103.062409
Popis: We present a bit encoding scheme for a highly efficient and scalable representation of bosonic Fock number states in the restricted Boltzmann machine neural network architecture. In contrast to common density matrix implementations, the complexity of the neural network scales only with the number of bit-encoded neurons rather than the maximum boson number. Crucially, in the high occupation regime its information compression efficiency is shown to surpass even maximally optimized density matrix implementations, where a projector method is used to access the sparsest Hilbert space representation available.
Databáze: arXiv