Quasi-static limit for a hyperbolic conservation law

Autor: Marchesani, Stefano, Olla, Stefano, Xu, Lu
Rok vydání: 2021
Předmět:
Zdroj: Nonlinear Differential Equations and Applications, 28:53, 2021
Druh dokumentu: Working Paper
DOI: 10.1007/s00030-021-00716-5
Popis: We study the quasi-static limit for the $L^\infty$ entropy weak solution of scalar one-dimensional hyperbolic equations with strictly concave or convex flux and time dependent boundary conditions. The quasi-stationary profile evolves with the quasi-static equation, whose entropy solution is determined by the stationary profile corresponding to the boundary data at a given time.
Comment: final version
Databáze: arXiv