Elementary Integration of Superelliptic Integrals
Autor: | Combot, Thierry |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Consider a superelliptic integral $I=\int P/(Q S^{1/k}) dx$ with $\mathbb{K}=\mathbb{Q}(\xi)$, $\xi$ a primitive $k$th root of unity, $P,Q,S\in\mathbb{K}[x]$ and $S$ has simple roots and degree coprime with $k$. Note $d$ the maximum of the degree of $P,Q,S$, $h$ the logarithmic height of the coefficients and $g$ the genus of $y^k-S(x)$. We present an algorithm which solves the elementary integration problem of $I$ generically in $O((kd)^{\omega+2g+1} h^{g+1})$ operations. |
Databáze: | arXiv |
Externí odkaz: |