On $H^*(BPU_n; \mathbb{Z})$ and Weyl group invariants

Autor: Crowley, Diarmuid, Gu, Xing
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: For the projective unitary group $PU_n$ with a maximal torus $T_{PU_n}$ and Weyl group $W$, we show that the integral restriction homomorphism \[\rho_{PU_n} \colon H^*(BPU_n;\mathbb{Z})\rightarrow H^*(BT_{PU_n};\mathbb{Z})^W\] to the integral invariants of the Weyl group action is onto. We also present several rings naturally isomorphic to $H^*(BT_{PU_n};\mathbb{Z})^W$. In addition we give general sufficient conditions for the restriction homomorphism $\rho_G$ to be onto for a connected compact Lie group $G$.
Comment: 18 pages. Minor corrections
Databáze: arXiv