A note on $\mathcal{F}_n$-multiple zeta values

Autor: Ono, Masataka, Sakurada, Kosuke, Seki, Shin-ichiro
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: For several evaluations of special values and several relations known only in $\mathcal{A}_n$-multiple zeta values or $\mathcal{S}_n$-multiple zeta values, we prove that they are uniformly valid in $\mathcal{F}_n$-multiple zeta values for both the case where $\mathcal{F}=\mathcal{A}$ and $\mathcal{F}=\mathcal{S}$. In particular, the Bowman-Bradley type theorem and sum formulas for $\mathcal{S}_2$-multiple zeta values are proved.
Comment: 27 pages, to appear in Commentarii mathematici Universitatis Sancti Pauli
Databáze: arXiv