On Dirichlet eigenvalues of regular polygons
Autor: | Berghaus, David, Georgiev, Bogdan, Monien, Hartmut, Radchenko, Danylo |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that the first Dirichlet eigenvalue of a regular $N$-gon of area $\pi$ has an asymptotic expansion of the form $\lambda_1(1+\sum_{n\ge3}C_n(\lambda_1)N^{-n})$ as $N\to\infty$, where $\lambda_1$ is the first Dirichlet eigenvalue of the unit disk and $C_n$ are polynomials whose coefficients belong to the space of multiple zeta values of weight $n$. We also explicitly compute these polynomials for all $n\le14$. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |