On Dirichlet eigenvalues of regular polygons

Autor: Berghaus, David, Georgiev, Bogdan, Monien, Hartmut, Radchenko, Danylo
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that the first Dirichlet eigenvalue of a regular $N$-gon of area $\pi$ has an asymptotic expansion of the form $\lambda_1(1+\sum_{n\ge3}C_n(\lambda_1)N^{-n})$ as $N\to\infty$, where $\lambda_1$ is the first Dirichlet eigenvalue of the unit disk and $C_n$ are polynomials whose coefficients belong to the space of multiple zeta values of weight $n$. We also explicitly compute these polynomials for all $n\le14$.
Comment: 15 pages
Databáze: arXiv