Popis: |
The fifth-generation mobile evolution enables several transformations on Next Generation Radio Access Networks (NG-RAN). The RAN protocol stack is splitting into eight possible disaggregated options combined into three network units, i.e., Central, Distributed, and Radio. Besides that, further advances allow the RAN software to be virtualized on top of general-purpose vendor-neutral hardware, dealing with the concept of virtualized RAN (vRAN). The disaggregated network units initiatives reach full interoperability based on the Open RAN (O-RAN). The combination of NG-RAN and vRAN results in vNG-RAN, enabling the management of disaggregated units and protocols as a set of radio functions. The placement of these functions is challenging since the best decision can be based on multiple constraints, such as the RAN protocol stack split, routing paths of transport networks with restricted bandwidth and latency requirements, different topologies and link capabilities, asymmetric computational resources, etc. This article proposes the first exact model for the placement optimization of radio functions for vNG-RAN planning, named PlaceRAN. The main objective is to minimize the computing resources and maximize the aggregation of radio functions. The PlaceRAN evaluation considered two realistic network topologies. Our results reveal that the PlaceRAN model achieves an optimized high-performance aggregation level, it is flexible for RAN deployment overcoming the network restrictions, and it is up to date with the most advanced vNG-RAN design and development. |