Optimal stability estimates and a new uniqueness result for advection-diffusion equations

Autor: Navarro-Fernández, Víctor, Schlichting, André, Seis, Christian
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: This paper contains two main contributions. First, it provides optimal stability estimates for advection-diffusion equations in a setting in which the velocity field is Sobolev regular in the spatial variable. This estimate is formulated with the help of Kantorovich--Rubinstein distances with logarithmic cost functions. Second, the stability estimates are extended to the advection-diffusion equations with velocity fields whose gradients are singular integrals of $L^1$ functions entailing a new well-posedness result.
Comment: 22 pages
Databáze: arXiv