Optimal stability estimates and a new uniqueness result for advection-diffusion equations
Autor: | Navarro-Fernández, Víctor, Schlichting, André, Seis, Christian |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper contains two main contributions. First, it provides optimal stability estimates for advection-diffusion equations in a setting in which the velocity field is Sobolev regular in the spatial variable. This estimate is formulated with the help of Kantorovich--Rubinstein distances with logarithmic cost functions. Second, the stability estimates are extended to the advection-diffusion equations with velocity fields whose gradients are singular integrals of $L^1$ functions entailing a new well-posedness result. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |